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Abstract 
Arbitrary amplitude solitary waves are investigated in weakly relativistic degenerate quantum plasma containing electrons and ions by 

employing Sagdeev’s pseudopotential approach. It is found that relativistic degeneracy, ion-to electron Fermi temperature ratio and 

quantum diffraction have significant contributions in determining the nature of pseudopotential well as well as the formation and 

properties of ion acoustic solitary wave structures in a two-component electron-ion dense quantum plasma.  
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I. INTRODUCTION 

The quantum plasma physics has a long and diverse 

tradition [1-3]. Recently there has been a surge in the research 

interest in the field [4]. Quantum plasma is characterize by low 

temperature and high density. In order to associate a meaning 

to the expression low temperature, it is important to compare 

the thermal interaction energies of the system. The coupling 

which determines whether a system is quantum or classical is 

the ratio of the potential energy to the kinetic energy. The 

expression for quantum and classical kinetic energies given 

below. For both classical and quantum Coulomb systems, the 

mean interaction energy Upot is the same and is equal to: 
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But the mean kinetic energies (Kc for classical and KQ for 

quantum) are not same for both the systems. They are given by 

the following relations: 
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Here TF is the Fermi temperature given by: 
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The classical and quantum coupling parameters are given by: 
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From the above equation we can say the classical weakly 

coupled plasma are found to be dilute and the quantum weakly 

coupled plasmas are found to be dense. The degeneracy 

parameter FT T   determines whether the system is 

quantum or classical according to which the Wigner 

formulation or the Vlasov formulation will be used. So far there 

has been a few mathematical models that describe the 

properties of quantum plasma. Some of them are the 

Schrödinger-Poisson (SP) formulation and Wigner-Poisson 

(WP) formulation. The SP model describes the hydrodynamic 

behavior of plasma particles in quantum scales whereas the WP 

model is often used in the study of quantum kinetic behavior of 

plasma. 

With the recent development of quantum plasma physics 

contributions of Haas [5], Manfredi [6], Shukla [4], Bonitz [7], 

Brodin [8], Marklund [9], Eliasson [10], Ghosh [11, 12], 

Chandra [13-24], and others and others [25, 26] have 

strengthen the field. All of them have employed the quantum 

hydrodynamic model (QSD) generalizes the classical fluid 

model for plasmas with the inclusion of a quantum correction 

term known as Bohm potential. The QSD model incorporates 

quantum statistical effects through the equation of state. In 

many cases these equation of state has been incorporated from 

Fermi Dirac distribution considering the plasma particles as 

quantum elements. Some have also considered degeneracy 

pressure arising out of relativistic effects in degenerate plasmas 

[27]. 

It was found in the early years of plasma physics that the 

underline physics of non-linear quantum like equation can be 
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better understood by rewriting those equations in the form of 

hydrodynamic equations which essentially represents the 

densities and momentum evaluation of quantum particles. It 

was an elegant treatment by Bohm [2] and Madelung [28] by 

introducing and eikonal representation for the wave function 

evolution in the non-stationary Schrödinger equations. The 

Madelung equations for quantum fluid is derived by [29-35]. In 

order to incorporate quantum fluid formalism, the quantum 

electron fluid equations were derived for the Klein-Gordon 

equations [36] and for the Dirac equations [37-39]. Over the 

past few years there has been an increase in the research of 

quantum plasmas as it finds applications in astrophysical 

plasma (white dwarf, neutron star etc) [40-46]. In laboratory 

produce plasmas, quantum effects are found in metal 

nanostructures, bio-photonics, CNT, microelectronics, laser 

solid interaction etc. Modulational instability, solitary 

structures has been studied by many authors by using reductive 

perturbation technique (RPT). It can only be used for small 

amplitude waves. Large amplitude waves can be investigated 

only by an exact mathematical tour, such as a pseudo potential 

approach. 

Ion acoustic solitary waves (IASWs) have been studied by 

many authors [47-55] (A 25-30,34-36). Non-linear IAWs in 

collision less unmagnetised quantum plasma has been 

investigated by Haas et al. [47] in one dimension. He 

incorporated the Bohm potential and quantum statistical 

pressure using Fermi-Dirac distribution. Misra and Bhowmik 

[48] studied the nonlinear IAWs in quantum plasma in non-

planar geometry by solving the Kodomstev-Petviasville (KP) 

equation. Moslem et al. have solved the Zakhrov-Kuznetsov 

(ZK) equation in quantum magnetoplasma. Some authors have 

also investigated dust IAWs and its behaviors. Masood et al. 

[52] have studied the solitary structure by Korteweg-de Vries 

(KDV) equation. Majority of these works are done using 

reductive perturbation technique (RPT) which a valid for small 

amplitude waves in order to investigate large amplitude solitary 

structure. It is necessary to analyse the exact solitary structure 

in which the total nonlinearity of the system is considered 

without any approximation. In plasma Sagdeev’s 

psedopotential is one such method which is widely used in 

various plasma models [53-55]. Ion acoustic solitary waves in 

unmagnetised electron plasma has been studied by Masood & 

Mushtaq [56] using Sagdeev’s pseudopotential approach. In 

their investigation they have neglected the ion temp which has 

finite effect in the formation and properties of ion acoustic 

solitary waves. The findings of Ali et al [57] have given much 

more insight to the properties of IAWs. By neglecting the effect 

of ion temperature. In ultra-dense matter the presence of 

relativistic degeneracy effects is given by Chandrasekhar in 

1939 [27]. The expression given by him has been applied in 

quantum plasmas by Akbari-Moghanjoughi [58], Labany et al. 

[59], Mamun and Shukla [60], Chandra et al. [17, 18]. Most of 

the work in ion acoustic waves including relativistic 

degeneracy effects were limited to small amplitude waves for 

which reductive perturbation technique is generally used. Large 

amplitude waves in such a relativistic quantum plasma have so 

far to our knowledge has not been investigated. The motivation 

of the present paper is to study the large amplitude ion acoustic 

solitary structure weakly relativistic degenerate electron ion 

plasma by employing Sagdeev’s psedopotential method. 

The paper is organized in the following way; in section 

two, the basic dynamic equations of the system using QHD 

model are introduced with proper justifications. It also derives 

the expression for pseudopotential U(n) in terms of n. The third 

section investigates the solitary properties of ion acoustic wave 

and it’s dependence of different parameters. Finally we discuss 

our results and came to a conclusion. 

 

II. BASIC FORMULATIONS 
 

Let us consider the homogeneous and unmagnetised 

electron-ion quantum plasma. In quantum plasma the effect of 

ion temperature on the IAW is studied by assuming the 

electrons to be inertialess & the ions are taken to be inertial. 

The phase velocity of the wave is taken to be 

/Fi FeV k V   (where VFi and VFe are the Fermi velocities 

of ions and electrons respectively). Ion pressure effects due to 

ion Fermi temperature can therefore be ignored. The basic 

dynamic equations ignoring the non-linear mechanisms of ion 

acoustic waves in quantum plasmas are given in the 

dimensional (unnormalised) form as: 
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Here nj, vj , mj ,−e are the density, velocity field, mass, and 

charge, respectively where j =e, i stands for electrons and ions.  

Meanwhile, ħ=h/2π is the reduced Planck constant,   is the 

electrostatic wave potential,  pe  is the electron pressure, and 

 1 3 /Ei FeT T   is the ion-to-electron Fermi Temperature ratio, 

where TFj is the Fermi temperature of the jth species. At 

equilibrium, we have ni0=ne0=n0. The equation of state for ions 

is given by considering them to be a fully degenerate 1-D 

Fermi gas [47]. Following Chandrasekhar (1939) the electron 
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degeneracy pressure in fully degenerate and relativistic 

configuration can be expressed in the following form: 
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the speed of light in vacuum.  
Fjp  is the electron Fermi 

relativistic momentum. It is to be noted that in the limits of 

very small values of relativity parameter eR  (the weakly 

relativistic case) we obtain: 
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Note that the degenerate electron pressure depends only on 

the electron number density but not on the electron 

temperature.  

Now, let 
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Now putting (14) in the equation (9) and using the 

following normalization: 
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normalized (dimensionless) equations are given as: 
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in which 2

04 /e e en e m  is the plasma frequency, 

2 /s B Fe ec k T m is the quantum ion-acoustic speed. H is the 

non-dimensional quantum diffraction parameter defined as

/ 2ec B FehH k T , where TFe is the Fermi temperatures for 

electrons. 

In order to get localize stationary solution, let us assume 

that all dependent variables are functions of single independent 

variable:  

x Mt  
             

(21) 

where M is the Mach number defined by v/cs , v is the velocity 

of the nonlinear waveform moving with the frame. By 

integrating (18) once and applying boundary conditions 1en   

& 0   at    ; we obtain
: 
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From the ion continuity equation (17) and ion momentum 

equation (19) with proper boundary 
conditions 

0, 0, 1i iv n as       we obtain: 
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Substituting equation (23) in (24) we get, 
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Now by employing quasi-neutrality conditions  

i en n n                  (26) 

and also substituting z n            (27) 

from equations (22) - (25) we obtain  
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Multiplying both sides of equation (28) by dZ d  and 

integrating with the boundary condition " 0n   and ' 0n   

and 0n  , (where primes represent derivatives with respect to  
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ξ) we obtain the nonlinear differential equation in terms of 

density as: 
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Where, the Sagdeev’s pseudopotential is defined as 

equation:  
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Equation (30) is called the energy integral of an oscillatory 

particle of mass unity moving with a velocity 'n dn d   at 

position n in a potential well U(n).  It has similar expression as 

found by Chatterjee et al. [61]. If the ion temperature is 

neglected the equation (30) agrees with equation (19) as 

reported by Mahmood & Mustaque [56]. 

The dependence of the Sagdeev’s pseudopotential on 

relativistic degeneracy parameter (F),quantum diffraction 

parameter(H),and ion- to- electron Fermi temperature ratio( ) 

are shown in figures 1 - 6.  

 

Fig 1: U(n) is plotted vs. n for different values of Relativistic 

degeneracy parameter F in a weakly relativistic plasma, other 

parameters are M=0.6, H=4 and σ=0.1. 
  

 

In figure 1 it is found that with cold ions ( =0.1), the 

pseudo potential well becomes deeper with increase in F. 

compared to its ultra-relativistic counterpart it is found that the 

well are deeper. When the Fermi temperature of the ions is 

greater than that of electrons the potential wells becomes 

deeper (fig 2).  

 

Fig 2: U(n) is plotted vs. n for different values of Relativistic 

degeneracy parameter F in a weakly relativistic plasma, other 

parameters are M=0.6, H=4 and σ=1.2. 

 

Figures 3 and 4 demonstrates the dependence on quantum 

diffraction parameter H. It is found that for colder ions the 

potential well becomes shallower with increase in n. But there 

is a region of anomaly (0 -
mn ) where the pseudo potential has 

decreasing value with increasing H.  

 

When compared to its ultra-relativistic counterpart it was 

further seen that in between the roots of U(n) (i.e. mn  and 1) 

the well becomes less deep. If ions are compared to the warmer 

than electron, the depth of the potential well increases (fig 4). 

Fig 3: U(n) is plotted vs. n for different values of Quantum 

diffraction parameter H in a weakly relativistic plasma, other 

parameters are M=0.6, F=2/3 and σ=0.1. 
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Fig 4: U(n) is plotted vs. n for different values of Quantum 

diffraction parameter H in a weakly relativistic plasma, other 

parameters are M=0.6, F=2/3 and σ=1.2 

 

The dependence of U(n) on ion temperature is shown in 

figures 5 & 6. It is found that for colder ions there is very slight 

variation in U(n) (fig 5) whereas for warmer ions the variation 

is visible (fig 6).  

The dependence of the pseudopotential well on different 

plasma parameters thus determine the formation of 

compressive or rarefractive solitary structure or it may even 

determine the possibility of the formation of double layers 

Fig 5: U(n) is plotted vs. n for different values of ion temperature 

ratio σ in a weakly relativistic plasma, other parameters are 

M=0.6, F=2/3 and H=4. 

Fig 6: U(n) is plotted vs. n for different values of ion temperature 

ratio σ in a weakly relativistic plasma, other parameters are 

M=0.6, F=2/3 and H=4. 

 

III. SOLITARY WAVE SOLUTIONS 

The plasma particles motion of a particle whose Sagdeev’s 

pseudopotential well U(n) in n  is given by Eq. (30). The 

properties of the pseudopotential U(n) will then decide the 

conditions for the existence of solitary wave solution. If it is 

found that between any two roots (in this case, 0 and nm) of the 

pseudopotential, U(n) is negative, then an oscillatory wave is 

found. On the reverse, if in the interval one root is a single root 

and another is a double root, then a solitary wave can be 

predicted [2]. If both the roots are double root, then a double 

layer exists. The initial conditions are chosen in such a way that 

the double root appears at n=1. Therefore it takes an 

sufficiently long time to get away from it and n reaches  zero at 

nm, then again taking infinitely long time to return to n=0. 

Hence, the conditions for the existence of solitary wave 

solution are the following: 
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If nm is less than unity then rarefractive solitary wave 

structures are formed. On the other hand if it is greater than 

unity, then compressive structures are obtained. It is to be noted 

that complex U(n) is not physically allowed as it would imply 

complex density which is not a  physical quantity. From 

equation (30), it is found that the shape of the solitary 

structures can be determined from the following: 
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The effect of relativistic degeneracy parameter (Figure 7), 

quantum diffraction parameter (Figure 8) & ion temperature 

(Figure 9) on the formation and properties of ion acoustic 

solitons are investigated are investigated.  

 

Fig. 7: n is plotted vs. ξ in weakly relativistic plasma with 

variation of Relativistic Degeneracy parameter F. The blue curve 

denotes F=2/3, red denotes F=1, black denotes F=4/3; other 

parameters are M=0.6, H=2 and σ=0.1. 

 

 

 

Fig. 8: n is plotted vs. ξ in weakly relativistic plasma with 

variation of quantum diffraction parameter H. The blue curve 

denotes H=2, red denotes H=4, black denotes H=6. Other 

parameters are M=0.6, F=2/3 and σ=0.1. 

Figures 7 to 9 shows the dependence of solitary structures 

in ion acoustic wave in a two-components electron-ion 

quantum plasma, (in which the ions are colder compare to the 

electrons) on the relativistic degeneracy parameter(F), quantum 

diffraction effect(H) & ion to electron Fermi temperature ratio (

 ).  

From figure 7 it is found that rarefractive solitons are 

formed with constant amplitude but with decreasing width (that 

is become narrower) with increasing value of F. The effect of 

quantum diffraction effect on ion acoustic solitary structures is 

shown in figure 8. It is found that the solitary waves become 

wider with increasing H (a measure of the quantum Bohm 

potential). The effect of ion-to- electron Fermi temperature 

ratio ( ) is shown in figure 9. Here   is varied keeping other 

parameter constant. It is found that the amplitude remain 

almost constant, but the width first decreases and then increases 

with increasing  . In the ultra-relative case the picture was 

slightly different where the amplitude gradually decreases. If 

ions were consider warmer the similar features were observed 

but with slightly varying magnitude. 

 

Fig. 9: n is plotted vs. ξ in weakly relativistic plasma with 

variation of ion temperature ratio σ. The blue curve denotes  σ = 

0.1, red denotes σ =0.2, black denotes σ = 0.3; other parameters 

are M=0.6, F=2/3 and H=2. 

 

IV. CONCLUSION & REMARKS 

In these paper arbitrary amplitude solitary structures ion 

acoustic solitary structures has been investigated in dense 

quantum plasma containing weakly relativistically degenerate 

electron & non relativistic ions. The dependency of Sagdeev’s 

pseudopotential well on relativistic degeneracy parameter, 

quantum diffraction parameter & ion-to electron Fermi 

temperature are investigated & from this information the 

feasibility for obtaining ion acoustic solitary structures is 

investigated. It is found that all these parameters (F, H & ) 

significantly affects the properties of ion acoustic solitary 

waves structures. 
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